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Abstract

Modeling of shallow water wind-waves has been a key component of coastal wave research. Numerical
results of these wave models play important roles in a wide range of applications, including the design of
commercial and military operations, and the decision-making processes in coastal zone management and
hazard mitigation. The purpose of this paper is to give a brief review of the recent progress in
mathematical/mumerical modeling of wind-waves propagating from deep water into a surf zone. The
primary focus of the review is on the depth-integrated wave models. However, the modelmg of breaking
waves using the Reynolds Averaged Navier-Stokes equations is also discussed.

1. Introduction

Every coastal or ocean engineering study such as
a beach renourishment project or a harbor
design, requires the information of wave
conditions in the area of interest. Usually, wave
characteristics are collected offshore and it is
necessary to transfer these offshore data on wave
heights and wave propagation direction to the
project site. The increasing demands for accurate
design wave conditions have resulted in
significant advancement of wave transformation
models during the last two decades.

In the early 1960’s the wave ray tracing method
was a common tool for consulting engineers to
estimate wave characteristics at a design site.
Today, powerful computers have provided
coastal engineers with the opportunity to employ
more sophisticated numerical models for wave
environment assessment. However, these
numerical models are still based on simplified
govemning equations, boundary conditions and
numerical  schemes, imposing  different
restrictions to practical applications. The
computational effort required for solving a wave
propagation problem exactly by taking all
physical processes, which involve many different
temporal and spatial scales, into account is still
not practical.

To date, two basic kinds of numerical wave
models can be distinguished: phase-resolving
models, based on vertically integrated, time-
dependent mass and momentum balance
equations and phase-averaged models, which are
based on a spectral energy balance equation. The

application of phase-resolving models is limited
to relatively small areas O {1 km) while phase-
averaged models do not require fine resolution

‘and can be used in much larger areas.

The more recent research has been focused on
the development of unified models, which can
describe  transient fully nonlinear wave
propagation from deep water to shallow water
over large areas. Furthermore, significant
progress has also been made in the modeling of
the wave-breaking process and in the simulation
of the wave and structure interaction.

2. Wave Propagation Models

2.1 Ray approximation

Efforts for reducing the computational efforts are
necessary and have been sought by reducing the
dimension of the computational domain.
Moreover, continuing efforts have been made to
construct a unified model that can propagate
wave from deep water into shallow water, even
into the surf zone. The forerunner of this kind of
effort is the ray approximation for infinitesimal
waves propagating over bathymetry that vary
slowly over horizontal distances much longer
than the local wavelength. In this
approximation, one first finds wave rays by
adopting the geometrical optic theory, which
defines the wave ray as a curve tangential to the
wave number vector. One then calculates the
spatial variation of the wave envelope along the
rays by invoking the principle of conservation of
energy. Numerical discretization can be done in
steps along a ray not necessarily small in
comparison with a typical wavelength. Since the
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ray approximation does not allow wave energy
fiux across a wave ray, it fails near the caustics
or the focal regions, where neighboring wave
rays intersect; diffract and possibly nonlinearity
are important. While ad hoc numerical methods
for local remedies are available, it is not always
convenient to implement them in practice.

2.2 Mild-slope equation

Within the frame work of linear wave theory, an
mmprovement to the ray approximation was first
suggested by Eckart (1952) and was later
rederived by Berkhoff (1972, 1976), who
proposed a two-dimensional theory which can
deal with large regions of refraction and
diffraction. The underlying assumption of the
theory is that evanescent modes arc not
important for waves propagating over a slowly
varying bathymetry, except in the immediate
vicinity of a three-dimensional obstacle. For a
monochromatic wave with frequency @ and free
surface displacement 7, it is reasonable to
express the velocity potential, which formally
represents the propagating model only, as:

—ign coshk(z + k)
= e
@ cosh kh

¢ o (1

where k(x,y)and A(x,y)vary slowly in the

horizontal directions, x and y, according to the
linear frequency dispersion relation,

@' = gktanh kk, where gis the gravitational
acceleration. By a perturbation argument one
can show that the free surface displacement 7
must satisfy the following equation:

2
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where C and C, are the local phase and group

velocities of a plane progressive wave, The
elliptic-type partial differential equation, (2), is
asymptotically valid for sufficiently small 5
(=|Vh| { kh to leading order) and is known as the

mild-slope equation. An indication of its
versatility can be seen in two limits. For long
waves in shallow water the limit of (2) at
kh <<l reduces to the well-known linear
shallow-water equation that is valid even if
d = 0(1). On the other hand, if the depth is a
constant or for short waves in deep water
(kA >> 1), (2) reduces to the Helmholtz equation

where £ satisfics the dispersion relation. Both
limits can be wused to calculate diffraction
legitimately.  Thus, the mild slope-equation
should be a good interpolation for all %+ and is
suitable for propagating wave from deep water to
shallow water as long as the linearization is
acceptable. A similar mild-slope equation for
waves propagating over gradually varying
currents has also been derived (e.g. Liu, 1990).

2.3 Parabolic approximaiion

In applying the mild-slope egquation to a large
region in coastal zome, one encounters the
difficulty of specifying boundary conditions
along the shoreline, which are essential for
solving the elliptic-type mild-slope equation.
The difficulty arises because the location of the
breaker can not be determined a priori. A
remedy to this problem is to apply the parabolic
approximation to the mild-slope equation. For
essentially forward propagation problems, the
so-called parabolic approximation expands the
validity of the ray theory by allowing wave
energy “diffuse” across the wave ‘“ray”
Therefore, the effects of diffraction have been
approximately included in the parabolic
approximation. Although the parabolic
approximation has been used primarily for
forward propagation, adopting an iterative
procedure can also include weakly backward
propagation {e.g. Liu and Tsay 1983, Chen and
Lin 1994).

2.4 Depth-integrated Wave Models

It is well-known that in the fairly shallow water,
where  both  nonlinearity and  frequency
dispersion are weak and are in the same order of
magnitude, the standard Boussinesq equations
for variable depth are adequate wave propagation
maodel (Peregrine 1967).

n, + V[(n+ 1] =0 3)
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in which  #is the depth-averaged velocity, 7
the free surface displacement; h the still water
depth, V=(9/x, 8/8y) the horizontal gradient
operator, g the gravitational acceleration; and
subscript ¢ the partial derivative with respect to

—153 —



time. Boussinesg equations can be recast into
similar equations in terms of either the velocity
on the bottom or the velocity on the free surface.
While the dispersion relationship and the wave
speed associated with these equations differ
slightly, the order of magnitude of accuracy of
these equations remains the same. Numerical
results based on the standard Boussinesq
equations or the equivalent formulations have
been shown to give predictions that compared
quite well with field data (Elgar and Guza 1985)
and laboratory data (Goring 1978, Liu et al.
1985).

Because it is required that both frequency
dispersion and nonlinear effects are weak, the
standard Boussinesq equations are not applicable
to very shallow water depth, where the
nonlinearity becomes more important than the
frequency dispersion, and to the deep water
depth, where the frequency dispersion is of order
one. The standard Boussinesq equations written
in terms of the depth-averaged velocity break
down when the depth is greater than one-fifth of
the equivalent deep-water wavelength. For many
engineering applications, where the incident
wave energy specttum consists of many
frequency components, a lesser depth restriction
is desirable. Furthermore, when the Boussinesg
equations are solved numerically, high frequency
oscillations with wavelengths related to the grid
size could cause instability, To extend the
applications to shorter waves (or deeper water
depth) many modified forms of Boussinesg-type
equations have been introduced {e.g. Madsen et
al. 1991, Nwogu 1993, Chen and Liu 1995).
Although the methods of derivation are different,
the resulting dispersion relations of the linear
components/ of these modified Boussinesq
equations are similar, and may be viewed as a
slight modification of the (2,2) Pade
approximation of the full dispersion relation for
linear water wave (Witting 1984). The depth-
integrated continuity equation and momentum
equations can be expressed in terms of the free

surface displacement 77 and #_, the horizontal

velocity vector at the water depth z=z_ , can be
expressed as:

zi i _
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It has been demonstrated that with optimal
choice of, 1z ,=-05312 the modified

Boussinesq equations are able to simulate wave
propagation from deep water to shallow water
including the wave-current interaction (Chen et
al. 1998). It should be also pointed out that the
convective acceleration in the momentum
equation (4) and (6) has been written in the
conservative foom. One could replace them by
the non-conservative form, ie. @w-Vu and

u, -Vu_, respectively, without changing the

order of magnitude of accuracy of the model
equations.

Despite of the success of the modified
Boussinesq equations in intermediate and deep
water, these equations are still restricted to
weakly nonlinearity. As waves approach shore,
wave height increases due to shoaling and wave
breaks on most of gentle natural beaches. The
wave-height to water depth ratios associated with
this physical process become too high for the
Boussinesq approximation. The appropriate
model equation for the leading order solution
should be the nonlinear shallow water equation.
Of course this restriction can be readily removed
by eliminating the weak nonlinearity assumption
{e.g. Lin 1994, Wei er al. 1995).  Strictly
speaking, these fully nonlinear equations can no
longer be called Boussinesq-type equations since
the nonlinearity is not in balance with the
frequency dispersion, which viclates the spirit of
the original Boussinesg assumption.

The fully nonlinear but weakly dispersive wave
equations have been presented by many
researchers and can be written as (Liu 1994):
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These equations are the statements of
conservation of mass and momentum
respectively. They are derived without making
any approximation on the nonlinearity.
Therefore, if one were to replace the
conservative form of the inertia term,

Vluﬂl2 /2, by u,-Vu in the momentum

equation, (8), additional higher order terms must
be added to maintain the order of magnitude in
accuracy. It is straightforward to show the
conventional Boussinesq equations, (3) and (4},
and the modified Boussinesq equations, (5) and
(6), are the subsets of the unified model
equations shown in (7) and (8).

2.5 Energy dissipation

In the previous sections all the wave theories
have been developed based on the assumption
that no energy dissipation occurs during the
wave transformation process. However, in most
coastal problems the effects of energy
dissipation, such as bottom friction and wave
breaking may become significant. In the
numerical models based on Boussinesqg-type
equations, adding a new term to the depth-
integrated momentum equation parameterizes the
wave breaking process. While Zelt (1991),
Karambas and Koutitas (1992) and Kennedy ez
al. (2000) used the eddy viscosity model,
Brocchini er al. (1992) and Schiffer ez al. (1993)
employed a more complicated roller model based
on the surface roller concept for spilling
breakers. In the roller mode! the instantaneous

roller thickness at each point and the orientation
of the roller must be prescribed. Furthermore, in
both approximations incipient breaking has to be
determined making certain assumptions. By
adjusting parameters associated with the
breaking models, results of these models all
showed very reascnable agreement with the
respective laboratory data for free surface
profiles. However, these models are unlikely to
produce accurate solutions for the velocity field
or to determine spatial distributions of the
turbulent kinetic energy and therefore, more
specific models on breaking waves are needed.

2.6 Reynolds Averaged Navier-Stokes (RANS)
Eguations model for Breaking Waves
Numerical modeling of three-dimensional
breaking waves is extremely difficult. Several
challenging tasks must be overcome. First of all,
one must be able to track accurately the free
surface location during the wave breaking
process so that the near surface dynamics is
captured. Secondly, one must properly model
the physics of turbulence production, transport
and dissipation throughout the entire wave
breaking process.  Thirdly, one needs to
overcome the huge demand in computational
resources.

There have been some successful two-
dimensional results. For instance, the marker
and cell (MAC) method (e.g., Johnson, et al
1994) and the volume of fluid method (VOF)
(e.g., Ng and Kot 1992, Lin and Liu 1998a) have
been used to calculate two-dimensional breaking
waves. The Reynolds Averaged Navier-Stokes
(RANS) equations coupled with a second-order
k - & turbulence closure model have been shown
to describe two-dimensional spilling and
plunging breaking waves in surf zones (Lin and
Liu 1998a,b). On the other hand, the Large Eddy
Simulation (LES) approach has also been applied
successfully for open channel flows where the
free surface does not break (e.g., Hodges 1997).
However, very little research has been reported
for simulating three-dimensional breaking
waves. Kawamura (1998) presented numerical
models for three-dimensional ship waves by
simulating a uniform free-surface flow passing a
vertical cylinder, The dynamic process of a
quasi-steady state ship waves is quite different
from that of the breaking waves in surf zone.

The RANS model described above has been
verified by comparing numerical results with
either experimental data or analytical solutions.
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For non-breaking waves, numerical models can
accurately generate and propagate solitary waves
as well as periodic waves. The numerical model
can also simulate the overturming of a surface jet
as the initial phase of the plunging wave
breaking processes. For both spilling and
plunging breaking waves on a beach the
numerical rtesults have been verified by
laboratory data carefully performed by Ting and
Kirby (1994, 1995). The detailed descriptions of
the numerical results and their comparison with
experimental data can be found in Liu and Lin
(1997) and Lin and Liu (1998a,b). The overall
agreement between numerical solutions and
experimental data was very good. Although they
are not shown here, the numerical results also
have been used to explain the generation and
transport of turbulence and vorticity throughout
the wave breaking process. The vertical profiles
of the eddy viscosity are obtained through out
the surf zone. The surf similarity has been
observed. Moreover, the model has also been
used to demonstrate the different diffusion
processes of pollutant release inside and outside
of the surf zone (Lin and Lin 1998b)

At the present time, the model is limited to two-
dimensional idealization. It is highly desirable to
extend its capability to Thandle three-
dimensionality.

3. Concluding Remarks

This paper has provided a brief review of the
recent advancement in modeling of wave
propagation from deep water to surf zone. Our
understanding of the roles of the nonlinearity and
frequency dispersion in wave propagation has
improved significantly and a unified depth-
integrated wave model has been obtained.
However, our knowledge on the wave breaking
process is still in its infancy. More research
effort in this area is certainly needed. Moreover,
although the wind effects on the surf zome
dynamics is not discussed in this article, it is by
no means ummportant. In fact, strong wind
conditions could result in higher setup as well as
stronger longshore currents.

At present, most of operational models are the
coupling of spectral wave models for a large
region and linear phase-resolving wave models
for smaller sub-regions {e.g., Allard. ez al. 1998),
The nonlinear models discussed in this article
have not been integrated into the operational
system, because of the relatively large

requirement in the computational -efforts.
Therefore, more research is also needed in search
for robust, accurate and efficient numerical
methods for solving the nonlinear wave models
with wave breaking and wind effects.
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